Dynamic Programming Algorithms Greedy Algorithms

Lecture 27

Return to Recursive algorithms: Divide-and-Conquer

- Divide-and-Conquer
 - Divide big problem into smaller subproblems
 - Conquer each subproblem separately
 - Merge the solutions of the subproblems into the solution of the big problem

Top-down approach

• Example:

```
Fibonnaci(n)
```

```
if (n \le 1) then return n
```

else return Fibonnaci(n-1) + Fibonnaci(n-2)

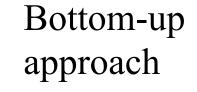
Very slow algorithm because we recompute Fibonnaci(i) many many times...

Dynamic programming

- Solve each small problem once, saving their solution
- Use the solutions of small problems to obtain solutions to larger problems

```
FibonnaciDynProg(n)
```

```
int F[0...n];
F[0] = 0 ;
F[1] = 1;
for i = 2 to n do
        F[i] = F[i-2] + F[i-1]
return F[n]
```



The change making problem

- A country has coins worth 1, 3, 5, and 8 cents
- What is the smallest number of contains needed to make
 - 25 cents?
 - 15 cents?
- In general, with coins denominations C₁, C₂, ..., C_k, how to find the smallest number of coins needed to make a total of n cents?

- Define Opt(n) as the optimal number of coins needed to make n cents
- We first write a recursive formula for Opt(n):
 Opt(0) = 0
 Opt(n) = 1 + min{ Opt(n C₁), Opt(n C₂), ... Opt(n C_k) }
 (excluding cases where C_i > n)

Example: with coins 1, 3, 5, 8

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Opt(n)	1	2	1	2	1	2	3	1	2						

- Define Opt(n) as the optimal number of coins needed to make n cents
- We first write a recursive formula for Opt(n):
 Opt(0) = 0
 Opt(n) = 1 + min{ Opt(n C₁), Opt(n C₂), ... Opt(n C_k) }
 (excluding cases where C_i > n)

Example: with coins 1, 3, 5, 8

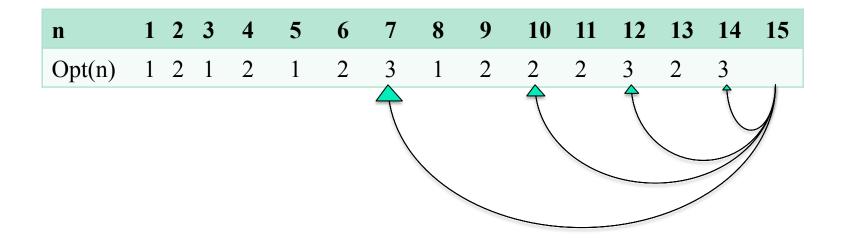
n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Opt(n)	1	2	1	2	1	2	3	1	2	2	2	3	2	3	

Opt(15) = 1 + min{ Opt(15 - 1), Opt(15 - 3), Opt(15 - 5), Opt(15 - 8)} = 1 + min{ 3, 3, 2, 3 } = 1 + 2 = 3

$$Opt(0) = 0$$

$$Opt(n) = 1 + min\{ Opt(n - C_1), Opt(n - C_2), \dots Opt(n - C_k) \}$$

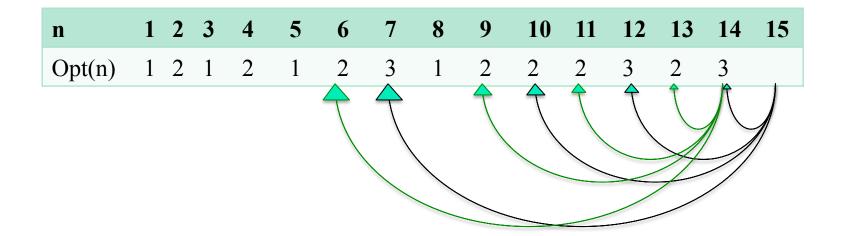
(excluding cases where C_i > n)



$$Opt(0) = 0$$

$$Opt(n) = 1 + min\{ Opt(n - C_1), Opt(n - C_2), \dots Opt(n - C_k) \}$$

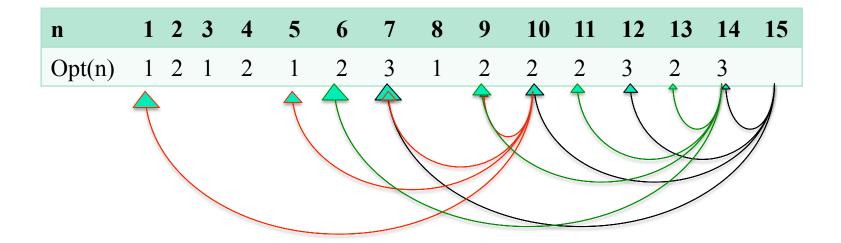
(excluding cases where C_i > n)



$$Opt(0) = 0$$

$$Opt(n) = 1 + min\{ Opt(n - C_1), Opt(n - C_2), \dots Opt(n - C_k) \}$$

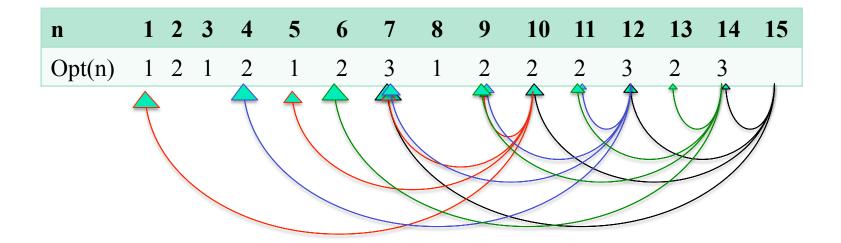
(excluding cases where C_i > n)



$$Opt(0) = 0$$

$$Opt(n) = 1 + min\{ Opt(n - C_1), Opt(n - C_2), \dots Opt(n - C_k) \}$$

(excluding cases where C_i > n)



Dyn. Prog. Algo. for making change

- Use the same formula...
 - Opt(0) = 0 $Opt(n) = 1 + min\{ Opt(n - C_1), Opt(n - C_2), \dots Opt(n - C_k) \}$ (excluding cases where C_i > n)
- But compute the values of Opt(i), starting with i=0, then i=1, ... up to i=n. Save them in an array X

n	1 2 3	3 4	5	6	7	8	9	10	11	12	13	14	15
X[n]	1 2 1	1 2	1	2	3	1	2	2	2	3	2	3	3

$$X[15] = 1 + \min\{ X[15 - 1], X[15 - 3], X[15 - 5], X[15 - 8] \}$$

= 1 + min{ 3, 3, 2, 3 }
= 1 + 2 = 3
Important: This is not a recursive algorithm!
Each entry in the array is computed *once*.

```
Algorithm makeChange(C[0..k-1], n)
```

Input: an array C containing the values of the coins an integer n

Output: The minimal number of coins needed to make a total of n

```
int X[] = new int[n+1]; // X[0...n]
```

X[0] = 0

```
for i = 1 to n do // compute min{ Opt( i - C<sub>j</sub>)}
```

```
smallest = +\infty
```

for j = 0 to k-1 do

if (C[j] \leq i) then smallest=min(smallest, X[i-C[j]]) X[i] = 1 + smallest

Return X[n]

Making change - Greedy algorithm

- You need to give x ¢ in change, using coins of 1, 5, 10, and 25 cents. What is the smallest number of coins needed?
- Greedy approach:
 - Take as many 25 ¢ as possible, then
 - take as many 10 ¢ as possible, then
 - take as many 5 ¢ as possible, then
 - take as many 1 ¢ as needed to complete
- Example: 99 $\phi = 3*25 \phi + 2*10 \phi + 1*5 \phi + 4*1 \phi$
- Is this always optimal?

Greedy-choice property

- A problem has the greedy choice property if:
 - An optimal solution can be reached by a series of locally optimal choices
- Change making: 1, 5, 10, 25 ¢: greedy is optimal
 1, 6, 10 ¢: greedy is not optimal
- For most optimization problems, greedy algorithms are not optimal. However, when they are, they are usually the fastest available.

Longest Increasing Subsequence

Problem: Given an array A[0..n-1] of integers, find the longest increasing subsequence in A.
Example: A = 5 1 4 2 8 4 9 1 8 9 2
Solution:

Slow algorithm: Try all possible subsequences...
for each possible subsequences s of A do
if (s is in increasing order) then
if (s is best seen so far) then save s
return best seen so far

Dynamic Programming Solution

Let LIS[i] = length of the longest increasing subsequence ending at position i and containing A[i].

 $\label{eq:LIS[0] = 1} \\ LIS[i] = 1 + \max\{ \ LIS[j] : j < i \ and \ A[j] < A[i] \} \\ \end{cases}$

Dynamic Programming Solution

Algorithm LongestIncreasingSubsequence(A, n) Input: an array A[0...n-1] of numbers Output: the length of the longest increasing subsequence of A LIS[0] = 1 for i = 1 to n-1 do LIS[i] = -1 // dummy initialization for j = 0 to i-1 do if (A[j] < A[i] and LIS[i] < LIS[j]+1) then LIS[i] = LIS[j] + 1 return max(LIS)

Dynamic Programming Framework

- Dynamic Programming Algorithms are mostly used for optimization problems
- To be able to use Dyn. Prog. Algo., the problem must have certain properties:
 - Simple subproblems: There must be a way to break the big problem into smaller subproblems. Subproblems must be identified with just a few indices.
 - Subproblem optimization: An optimal solution to the big problem must always be a combination of optimal solutions to the subproblems.
 - Subproblem overlap: Optimal solutions to unrelated problems can contain subproblems in common.