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Return to Recursive algorithms: 
Divide-and-Conquer 

•  Divide-and-Conquer 
–  Divide big problem into smaller subproblems 
–  Conquer each subproblem separately 
–  Merge the solutions of the subproblems      

into the solution of the big problem 
•  Example:  
Fibonnaci(n) 

 if (n ≤ 1) then return n 
 else return Fibonnaci(n-1) + Fibonnaci(n-2) 

 
Very slow algorithm because we recompute 

Fibonnaci(i) many many times... 

Top-down 
approach 



Dynamic programming 
•  Solve each small problem once,         

saving their solution 
•  Use the solutions of small problems             

to obtain solutions to larger problems 
FibonnaciDynProg(n) 
int F[0...n]; 
F[0] = 0 ;    
F[1] = 1; 
for i = 2 to n do 

 F[i] = F[i-2] + F[i-1] 
return F[n] 
 

Bottom-up 
approach 



The change making problem 
•  A country has coins worth 1, 3, 5, and 8 cents 
•  What is the smallest number of contains needed to 

make  
–  25 cents? 
–  15 cents? 

•  In general, with coins denominations C1, C2, ..., 
Ck,   how to find the smallest number of coins 
needed to make a total of n cents? 



Recursive algo. for making change 
•  Define Opt(n) as the optimal number of coins needed 

to make n cents 
•  We first write a recursive formula for Opt(n): 

 Opt(0) = 0 
 Opt(n) = 1 + min{ Opt( n – C1 ), Opt( n – C2 ) , … Opt( n – Ck ) } 
            (excluding cases where Ci > n) 

 
Example: with coins 1, 3, 5, 8 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Opt(n) 1 2 1 2 1 2 3 1 2 



Recursive algo for making change 
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 Opt(0) = 0 
 Opt(n) = 1 + min{ Opt( n – C1 ), Opt( n – C2 ) , … Opt( n – Ck ) } 
            (excluding cases where Ci > n) 

 
Example: with coins 1, 3, 5, 8 
 
 
 
Opt(15) = 1 + min{ Opt( 15 - 1 ), Opt( 15 - 3 ), Opt(15 - 5), Opt(15 - 8)} 
             = 1 + min{  3, 3, 2, 3 }  
             = 1 + 2 = 3 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Opt(n) 1 2 1 2 1 2 3 1 2 2 2 3 2 3 
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            (excluding cases where Ci > n) 

 
Problem: Recursive algorithm is very slow, because it keeps 

recomputing the same Opt values over and over again 
 
 
 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Opt(n) 1 2 1 2 1 2 3 1 2 2 2 3 2 3 



Dyn. Prog. Algo. for making change 
•  Use the same formula… 

 Opt(0) = 0 
 Opt(n) = 1 + min{ Opt( n – C1 ), Opt( n – C2 ) , … Opt( n – Ck ) } 
            (excluding cases where Ci > n) 

•  But compute the values of Opt(i), starting with i=0, 
then i=1, … up to i=n. Save them in an array X 

 
 
 
 
X[15] = 1 + min{ X[15 – 1], X[15 – 3], X[15 – 5], X[15 – 8]} 
             = 1 + min{  3, 3, 2, 3 }  
             = 1 + 2 = 3 
Important:  This is not a recursive algorithm!  

   Each entry in the array is computed once. 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
X[n] 1 2 1 2 1 2 3 1 2 2 2 3 2 3 3 



Algorithm makeChange(C[0..k-1], n) 
Input: an array C containing the values of the coins 
          an integer n  
Output: The minimal number of coins needed to      

make a total of n 
int X[] = new int[n+1];       // X[0...n] 
X[0] = 0 
for i =1 to n do  // compute min{ Opt( i - Cj )} 

   smallest = +∞             
   for j = 0 to k-1 do  
    if ( C[j] ≤ i ) then smallest=min(smallest, X[ i-C[j] ] ) 
   X[i] = 1 + smallest 

Return X[n] 



Making change - Greedy algorithm 
•  You need to give x ¢ in change, using coins of 1, 

5, 10, and 25 cents. What is the smallest number 
of coins needed? 

•  Greedy approach: 
–  Take as many 25 ¢ as possible, then 
–  take as many 10 ¢ as possible, then 
–  take as many 5 ¢ as possible, then  
–  take as many 1 ¢ as needed to complete 

•  Example: 99 ¢ = 3* 25 ¢ + 2*10 ¢ + 1*5 ¢ + 4*1 ¢ 
•  Is this always optimal? 



Greedy-choice property 
•  A problem has the greedy choice property if: 

– An optimal solution can be reached by a series 
of locally optimal choices 

•  Change making: 1, 5, 10, 25 ¢: greedy is optimal 
    1, 6, 10 ¢: greedy is not optimal 

 
•  For most optimization problems, greedy algorithms 

are not optimal. However, when they are, they are 
usually the fastest available. 



Longest Increasing Subsequence 

Problem: Given an array A[0..n-1] of integers, find the 
longest increasing subsequence in A. 

Example: A =  5  1  4  2  8  4  9  1  8  9  2                            
Solution: 
 
Slow algorithm: Try all possible subsequences… 
for each possible subsequences s of A do 

 if (s is in increasing order) then 
  if (s is best seen so far) then save s 

return best seen so far 
           



Dynamic Programming Solution 

Let LIS[i] = length of the longest increasing subsequence 
           ending at position i and containing A[i]. 

A    =  5  1  4  2  8  4  9  1  8  9  2 
LIS =  
 
LIS[0] = 1 
LIS[i] = 1 + max{ LIS[j] : j < i  and  A[j] < A[i] } 



Dynamic Programming Solution 
Algorithm LongestIncreasingSubsequence(A, n) 
Input: an array A[0...n-1] of numbers 
Output: the length of the longest increasing subsequence of A 
LIS[0] = 1 
for i = 1 to n-1 do 

 LIS[i] = -1    // dummy initialization 
 for j = 0 to i-1 do 
       if ( A[j] < A[i] and LIS[i] < LIS[j]+1) then LIS[i] = LIS[j] + 1 

return max(LIS) 
 
 



Dynamic Programming Framework 
•  Dynamic Programming Algorithms are mostly 

used for optimization problems 
•  To be able to use Dyn. Prog. Algo., the problem 

must have certain properties: 
–  Simple subproblems: There must be a way to break 

the big problem into smaller subproblems. Subproblems 
must be identified with just a few indices.  

–  Subproblem optimization: An optimal solution to the 
big problem must always be a combination of optimal 
solutions to the subproblems. 

–  Subproblem overlap: Optimal solutions to unrelated 
problems can contain subproblems in common. 


