
Dynamic Programming Algorithms
Greedy Algorithms

Lecture 27

Return to Recursive algorithms:
Divide-and-Conquer

•  Divide-and-Conquer
–  Divide big problem into smaller subproblems
–  Conquer each subproblem separately
–  Merge the solutions of the subproblems

into the solution of the big problem
•  Example:
Fibonnaci(n)

 if (n ≤ 1) then return n
 else return Fibonnaci(n-1) + Fibonnaci(n-2)

Very slow algorithm because we recompute

Fibonnaci(i) many many times...

Top-down
approach

Dynamic programming
•  Solve each small problem once,

saving their solution
•  Use the solutions of small problems

to obtain solutions to larger problems
FibonnaciDynProg(n)
int F[0...n];
F[0] = 0 ;
F[1] = 1;
for i = 2 to n do

 F[i] = F[i-2] + F[i-1]
return F[n]

Bottom-up
approach

The change making problem
•  A country has coins worth 1, 3, 5, and 8 cents
•  What is the smallest number of contains needed to

make
–  25 cents?
–  15 cents?

•  In general, with coins denominations C1, C2, ...,
Ck, how to find the smallest number of coins
needed to make a total of n cents?

Recursive algo. for making change
•  Define Opt(n) as the optimal number of coins needed

to make n cents
•  We first write a recursive formula for Opt(n):

 Opt(0) = 0
 Opt(n) = 1 + min{ Opt(n – C1), Opt(n – C2) , … Opt(n – Ck) }
 (excluding cases where Ci > n)

Example: with coins 1, 3, 5, 8

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Opt(n) 1 2 1 2 1 2 3 1 2

Recursive algo for making change
•  Define Opt(n) as the optimal number of coins needed

to make n cents
•  We first write a recursive formula for Opt(n):

 Opt(0) = 0
 Opt(n) = 1 + min{ Opt(n – C1), Opt(n – C2) , … Opt(n – Ck) }
 (excluding cases where Ci > n)

Example: with coins 1, 3, 5, 8

Opt(15) = 1 + min{ Opt(15 - 1), Opt(15 - 3), Opt(15 - 5), Opt(15 - 8)}
 = 1 + min{ 3, 3, 2, 3 }
 = 1 + 2 = 3

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Opt(n) 1 2 1 2 1 2 3 1 2 2 2 3 2 3

Recursive algo for making change
 Opt(0) = 0
 Opt(n) = 1 + min{ Opt(n – C1), Opt(n – C2) , … Opt(n – Ck) }
 (excluding cases where Ci > n)

Problem: Recursive algorithm is very slow, because it keeps

recomputing the same Opt values over and over again

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Opt(n) 1 2 1 2 1 2 3 1 2 2 2 3 2 3

Recursive algo for making change
 Opt(0) = 0
 Opt(n) = 1 + min{ Opt(n – C1), Opt(n – C2) , … Opt(n – Ck) }
 (excluding cases where Ci > n)

Problem: Recursive algorithm is very slow, because it keeps

recomputing the same Opt values over and over again

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Opt(n) 1 2 1 2 1 2 3 1 2 2 2 3 2 3

Recursive algo for making change
 Opt(0) = 0
 Opt(n) = 1 + min{ Opt(n – C1), Opt(n – C2) , … Opt(n – Ck) }
 (excluding cases where Ci > n)

Problem: Recursive algorithm is very slow, because it keeps

recomputing the same Opt values over and over again

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Opt(n) 1 2 1 2 1 2 3 1 2 2 2 3 2 3

Recursive algo for making change
 Opt(0) = 0
 Opt(n) = 1 + min{ Opt(n – C1), Opt(n – C2) , … Opt(n – Ck) }
 (excluding cases where Ci > n)

Problem: Recursive algorithm is very slow, because it keeps

recomputing the same Opt values over and over again

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Opt(n) 1 2 1 2 1 2 3 1 2 2 2 3 2 3

Dyn. Prog. Algo. for making change
•  Use the same formula…

 Opt(0) = 0
 Opt(n) = 1 + min{ Opt(n – C1), Opt(n – C2) , … Opt(n – Ck) }
 (excluding cases where Ci > n)

•  But compute the values of Opt(i), starting with i=0,
then i=1, … up to i=n. Save them in an array X

X[15] = 1 + min{ X[15 – 1], X[15 – 3], X[15 – 5], X[15 – 8]}
 = 1 + min{ 3, 3, 2, 3 }
 = 1 + 2 = 3
Important: This is not a recursive algorithm!

 Each entry in the array is computed once.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
X[n] 1 2 1 2 1 2 3 1 2 2 2 3 2 3 3

Algorithm makeChange(C[0..k-1], n)
Input: an array C containing the values of the coins
 an integer n
Output: The minimal number of coins needed to

make a total of n
int X[] = new int[n+1]; // X[0...n]
X[0] = 0
for i =1 to n do // compute min{ Opt(i - Cj)}

 smallest = +∞
 for j = 0 to k-1 do
 if (C[j] ≤ i) then smallest=min(smallest, X[i-C[j]])
 X[i] = 1 + smallest

Return X[n]

Making change - Greedy algorithm
•  You need to give x ¢ in change, using coins of 1,

5, 10, and 25 cents. What is the smallest number
of coins needed?

•  Greedy approach:
–  Take as many 25 ¢ as possible, then
–  take as many 10 ¢ as possible, then
–  take as many 5 ¢ as possible, then
–  take as many 1 ¢ as needed to complete

•  Example: 99 ¢ = 3* 25 ¢ + 2*10 ¢ + 1*5 ¢ + 4*1 ¢
•  Is this always optimal?

Greedy-choice property
•  A problem has the greedy choice property if:

– An optimal solution can be reached by a series
of locally optimal choices

•  Change making: 1, 5, 10, 25 ¢: greedy is optimal
 1, 6, 10 ¢: greedy is not optimal

•  For most optimization problems, greedy algorithms

are not optimal. However, when they are, they are
usually the fastest available.

Longest Increasing Subsequence

Problem: Given an array A[0..n-1] of integers, find the
longest increasing subsequence in A.

Example: A = 5 1 4 2 8 4 9 1 8 9 2
Solution:

Slow algorithm: Try all possible subsequences…
for each possible subsequences s of A do

 if (s is in increasing order) then
 if (s is best seen so far) then save s

return best seen so far

Dynamic Programming Solution

Let LIS[i] = length of the longest increasing subsequence
 ending at position i and containing A[i].

A = 5 1 4 2 8 4 9 1 8 9 2
LIS =

LIS[0] = 1
LIS[i] = 1 + max{ LIS[j] : j < i and A[j] < A[i] }

Dynamic Programming Solution
Algorithm LongestIncreasingSubsequence(A, n)
Input: an array A[0...n-1] of numbers
Output: the length of the longest increasing subsequence of A
LIS[0] = 1
for i = 1 to n-1 do

 LIS[i] = -1 // dummy initialization
 for j = 0 to i-1 do
 if (A[j] < A[i] and LIS[i] < LIS[j]+1) then LIS[i] = LIS[j] + 1

return max(LIS)

Dynamic Programming Framework
•  Dynamic Programming Algorithms are mostly

used for optimization problems
•  To be able to use Dyn. Prog. Algo., the problem

must have certain properties:
–  Simple subproblems: There must be a way to break

the big problem into smaller subproblems. Subproblems
must be identified with just a few indices.

–  Subproblem optimization: An optimal solution to the
big problem must always be a combination of optimal
solutions to the subproblems.

–  Subproblem overlap: Optimal solutions to unrelated
problems can contain subproblems in common.

