Dynamic Programming Algorithms Greedy Algorithms

Lecture 27

Return to Recursive algorithms: Divide-and-Conquer

- Divide-and-Conquer
- Divide big problem into smaller subproblems
- Conquer each subproblem separately

Top-down
approach

- Merge the solutions of the subproblems into the solution of the big problem
- Example:

Fibonnaci(n)
if $(\mathrm{n} \leq 1)$ then return n
else return Fibonnaci(n-1) + Fibonnaci(n-2)

Very slow algorithm because we recompute
Fibonnaci(i) many many times...

Dynamic programming

- Solve each small problem once, saving their solution
- Use the solutions of small problems

Bottom-up approach

FibonnaciDynProg(n) int F[0...n];
$\mathrm{F}[0]=0$;
$\mathrm{F}[1]=1$;
for $\mathrm{i}=2$ to n do
$F[i]=F[i-2]+F[i-1]$
return $\mathrm{F}[\mathrm{n}]$

The change making problem

- A country has coins worth $1,3,5$, and 8 cents
- What is the smallest number of contains needed to make
- 25 cents?
- 15 cents?
- In general, with coins denominations $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots$, C_{k}, how to find the smallest number of coins needed to make a total of n cents?

Recursive algo. for making change

- Define Opt(n) as the optimal number of coins needed to make n cents
- We first write a recursive formula for $\operatorname{Opt}(\mathrm{n})$:

$$
\begin{aligned}
& \operatorname{Opt}(0)=0 \\
& \operatorname{Opt}(n)=1+\min \left\{\operatorname{Opt}\left(n-C_{1}\right), \operatorname{Opt}\left(n-C_{2}\right), \ldots \operatorname{Opt}\left(n-C_{k}\right)\right\} \\
& \quad\left(\operatorname{excluding} \text { cases where } C_{i}>n\right)
\end{aligned}
$$

Example: with coins 1, 3, 5, 8

\mathbf{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
$\operatorname{Opt}(\mathrm{n})$	1	2	1	2	1	2	3	1	2						

Recursive algo for making change

- Define Opt(n) as the optimal number of coins needed to make n cents
- We first write a recursive formula for $\operatorname{Opt}(\mathrm{n})$:

$$
\begin{aligned}
& \operatorname{Opt}(0)=0 \\
& \operatorname{Opt}(\mathrm{n})=1+\min \left\{\operatorname{Opt}\left(\mathrm{n}-\mathrm{C}_{1}\right), \operatorname{Opt}\left(\mathrm{n}-\mathrm{C}_{2}\right), \ldots \operatorname{Opt}\left(\mathrm{n}-\mathrm{C}_{\mathrm{k}}\right)\right\} \\
& \quad\left(\operatorname{excluding} \text { cases where } \mathrm{C}_{\mathrm{i}}>\mathrm{n}\right)
\end{aligned}
$$

Example: with coins 1, 3, 5, 8

\mathbf{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
$\operatorname{Opt}(\mathrm{n})$	1	2	1	2	1	2	3	1	2	2	2	3	2	3	

$$
\begin{aligned}
\operatorname{Opt}(15) & =1+\min \{\operatorname{Opt}(15-1), \operatorname{Opt}(15-3), \operatorname{Opt}(15-5), \operatorname{Opt}(15-8)\} \\
& =1+\min \{3,3,2,3\} \\
& =1+2=3
\end{aligned}
$$

Recursive algo for making change

$$
\begin{aligned}
& \operatorname{Opt}(0)=0 \\
& \operatorname{Opt}(\mathrm{n})=1+\min \left\{\operatorname{Opt}\left(\mathrm{n}-\mathrm{C}_{1}\right), \operatorname{Opt}\left(\mathrm{n}-\mathrm{C}_{2}\right), \ldots \operatorname{Opt}\left(\mathrm{n}-\mathrm{C}_{\mathrm{k}}\right)\right\} \\
& \left(\operatorname{excluding} \text { cases where } \mathrm{C}_{\mathrm{i}}>\mathrm{n}\right)
\end{aligned}
$$

Problem: Recursive algorithm is very slow, because it keeps recomputing the same Opt values over and over again

Recursive algo for making change

$$
\begin{aligned}
& \operatorname{Opt}(0)=0 \\
& \operatorname{Opt}(\mathrm{n})=1+\min \left\{\operatorname{Opt}\left(\mathrm{n}-\mathrm{C}_{1}\right), \operatorname{Opt}\left(\mathrm{n}-\mathrm{C}_{2}\right), \ldots \operatorname{Opt}\left(\mathrm{n}-\mathrm{C}_{\mathrm{k}}\right)\right\} \\
& \left(\operatorname{excluding} \text { cases where } \mathrm{C}_{\mathrm{i}}>\mathrm{n}\right)
\end{aligned}
$$

Problem: Recursive algorithm is very slow, because it keeps recomputing the same Opt values over and over again

Recursive algo for making change

$$
\begin{aligned}
& \operatorname{Opt}(0)=0 \\
& \operatorname{Opt}(\mathrm{n})=1+\min \left\{\operatorname{Opt}\left(\mathrm{n}-\mathrm{C}_{1}\right), \operatorname{Opt}\left(\mathrm{n}-\mathrm{C}_{2}\right), \ldots \operatorname{Opt}\left(\mathrm{n}-\mathrm{C}_{\mathrm{k}}\right)\right\} \\
& \left(\operatorname{excluding} \text { cases where } \mathrm{C}_{\mathrm{i}}>\mathrm{n}\right)
\end{aligned}
$$

Problem: Recursive algorithm is very slow, because it keeps recomputing the same Opt values over and over again

Recursive algo for making change

$$
\begin{aligned}
& \operatorname{Opt}(0)=0 \\
& \operatorname{Opt}(\mathrm{n})=1+\min \left\{\operatorname{Opt}\left(\mathrm{n}-\mathrm{C}_{1}\right), \operatorname{Opt}\left(\mathrm{n}-\mathrm{C}_{2}\right), \ldots \operatorname{Opt}\left(\mathrm{n}-\mathrm{C}_{\mathrm{k}}\right)\right\} \\
& \left(\operatorname{excluding} \text { cases where } \mathrm{C}_{\mathrm{i}}>\mathrm{n}\right)
\end{aligned}
$$

Problem: Recursive algorithm is very slow, because it keeps recomputing the same Opt values over and over again

Dyn. Prog. Algo. for making change

- Use the same formula...

$$
\begin{aligned}
& \operatorname{Opt}(0)=0 \\
& \operatorname{Opt}(n)=1+\min \left\{\operatorname{Opt}\left(n-C_{1}\right), \operatorname{Opt}\left(n-C_{2}\right), \ldots \operatorname{Opt}\left(n-C_{k}\right)\right\}
\end{aligned}
$$

$$
\text { (excluding cases where } \mathrm{C}_{\mathrm{i}}>\mathrm{n} \text {) }
$$

- But compute the values of $\operatorname{Opt}(\mathrm{i})$, starting with $\mathrm{i}=0$, then $\mathrm{i}=1, \ldots$ up to $\mathrm{i}=$ n. Save them in an array X

\mathbf{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
$\mathrm{X}[\mathrm{n}]$	1	2	1	2	1	2	3	1	2	2	2	3	2	3	3

$$
\begin{aligned}
X[15]= & 1+\min \{X[15-1], X[15-3], X[15-5], X[15-8]\} \\
& =1+\min \{3,3,2,3\} \\
& =1+2=3
\end{aligned}
$$

Important: This is not a recursive algorithm!
Each entry in the array is computed once.

Algorithm makeChange(C[0..k-1], n)
Input: an array C containing the values of the coins an integer n
Output: The minimal number of coins needed to make a total of n
int X[]$=$ new $\operatorname{int}[\mathrm{n}+1] ; \quad / / \mathrm{X}[0 \ldots \mathrm{n}]$
$\mathrm{X}[0]=0$
for $\mathrm{i}=1$ to n do $/ /$ compute $\min \left\{\operatorname{Opt}\left(\mathrm{i}-\mathrm{C}_{\mathrm{j}}\right)\right\}$
smallest $=+\infty$
for $\mathrm{j}=0$ to $\mathrm{k}-1$ do
if $(\mathrm{C}[\mathrm{j}] \leq \mathrm{i})$ then smallest= $\min ($ smallest, $\mathrm{X}[\mathrm{i}-\mathrm{C}[\mathrm{j}]])$
$\mathrm{X}[\mathrm{i}]=1+$ smallest
Return $\mathrm{X}[\mathrm{n}]$

Making change - Greedy algorithm

- You need to give $\mathrm{x} \phi$ in change, using coins of 1 , 5,10 , and 25 cents. What is the smallest number of coins needed?
- Greedy approach:
- Take as many 25ϕ as possible, then
- take as many 10ϕ as possible, then
- take as many 5ϕ as possible, then
- take as many $1 申$ as needed to complete
- Example: $99 \not \subset=3 * 25 \phi+2 * 10 \phi+1^{*} 5 \phi+4^{*} 1 \phi$
- Is this always optimal?

Greedy-choice property

- A problem has the greedy choice property if:
- An optimal solution can be reached by a series of locally optimal choices
- Change making: $1,5,10,25 \phi$: greedy is optimal $1,6,10 \not \subset$: greedy is not optimal
- For most optimization problems, greedy algorithms are not optimal. However, when they are, they are usually the fastest available.

Longest Increasing Subsequence

Problem: Given an array $\mathrm{A}[0 . . \mathrm{n}-1]$ of integers, find the longest increasing subsequence in A .
Example: A = 514428491892
Solution:

Slow algorithm: Try all possible subsequences...
for each possible subsequences s of A do if (s is in increasing order) then if (s is best seen so far) then save s
return best seen so far

Dynamic Programming Solution

Let LIS[i] = length of the longest increasing subsequence ending at position i and containing $\mathrm{A}[\mathrm{i}]$.
$\mathrm{A}=51428491892$
LIS =

LIS[0] = 1
$\operatorname{LIS}[\mathrm{i}]=1+\max \{\operatorname{LIS}[\mathrm{j}]: \mathrm{j}<\mathrm{i}$ and $\mathrm{A}[\mathrm{j}]<\mathrm{A}[\mathrm{i}]\}$

Dynamic Programming Solution

Algorithm LongestIncreasingSubsequence(A, n) Input: an array $A[0 \ldots n-1]$ of numbers
Output: the length of the longest increasing subsequence of A LIS[0] = 1
for $\mathrm{i}=1$ to $\mathrm{n}-1$ do
LIS[i] =-1 // dummy initialization
for $\mathrm{j}=0$ to $\mathrm{i}-1$ do
if $(A[j]<A[i]$ and LIS[i] < LIS[j]+1) then LIS[i] = LIS[j] + 1
return max(LIS)

Dynamic Programming Framework

- Dynamic Programming Algorithms are mostly used for optimization problems
- To be able to use Dyn. Prog. Algo., the problem must have certain properties:
- Simple subproblems: There must be a way to break the big problem into smaller subproblems. Subproblems must be identified with just a few indices.
- Subproblem optimization: An optimal solution to the big problem must always be a combination of optimal solutions to the subproblems.
- Subproblem overlap: Optimal solutions to unrelated problems can contain subproblems in common.

